D. C. Nguyen, Q.-V. Pham, P. N. Pathirana, M. Ding, A. Seneviratne, Z. Lin, O. Dobre, and W.-J. Hwang. “Federated learning for smart healthcare: A survey”. In: ACM Computing Surveys (CSUR) 55.3 (2022), pp. 1–37. doi: 10.1145/3501296. |
T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. “Federated learning: Challenges, methods, and future directions”. In: IEEE signal processing magazine 37.3 (2020), pp. 50–60. doi: 10.1109/MSP.2020.2975749. |
Q. Yang, Y. Liu, T. Chen, and Y. Tong. “Federated machine learning: Concept and applications”. In: ACM Transactions on Intelligent Systems and Technology (TIST) 10.2 (2019), pp. 1–19. doi: 10.1145/3298981. |
Google Developers. Descending into ML: Training and Loss. (visited on 04/26/2023). |